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Introduction. 
Current anti-angiogenic therapies focus on the earliest steps in the angiogenic 

signaling cascades and try to prevent angiogenic molecules (i.e. VEGF, Ang-1, TGF-α) 
from reaching endothelial cells or try to prevent activation of their endothelial cell (EC) 
receptors. However, the study of downstream steps, within tumor ECs, as an avenue for 
treatment has been neglected. Furthermore, due to a lack of appropriate in vivo imaging 
and measurement tools, these EC signaling cascades have been explored almost 
exclusively in thin preparations of healthy vessels (i.e. vessels in the easily accessible, 25 
micron mesenteric membrane) or in endothelial cells in a dish, and the signaling 
machinery that is delineated varies depending upon which type of healthy vessel provides 
the ECs. As tumor vessels are fundamentally unlike any of the healthy vessels in the 
body, we don’t know which of the known signaling pathways are involved in in vivo 
tumor angiogenesis, or if any of them are. Consequently, we propose to elucidate the 
signaling pathway that translates VEGFR activation into elevated vessel permeability, in 
endothelial cells within living breast tumor models. The working hypothesis is that the 
signaling pathway involved is a constitutively active form of the pathway shown for 
healthy mesenteric microvessels. We have identified several signaling molecules that we 
hypothesize will play key roles in that pathway. In each case we will pharmacologically 
enhance or inhibit the action of a given molecule, and use advanced in vivo imaging 
techniques that we are currently developing or have previously developed to probe the 
resultant alterations in the VEGF/permeability relationship, with EC internal calcium 
dynamics as a key intermediate readout. Elucidation of this pathway is motivated by the 
desire to find new therapeutic targets, with which to block tumor angiogenesis and hence 
restrict tumor growth. Current angiogenic therapies, which favor blocking transit of an 
angiogenic factor to the ECs or inhibition of receptor activation, often fail because there 
can be several parallel pathways for angiogenic signals to travel from tumor cells to ECs, 
and when one is blocked, others are utilized. Signaling that occurs downstream of 
endothelial receptor activation may provide a signaling 'bottleneck' that several 
angiogenic factors utilize in common and hence may provide a uniquely powerful 
therapeutic target which circumvents the development of drug resistance. 
 
Body 

We are now concluding the second year of this grant, as well as the second year 
of my laboratory, here in the Department of Biomedical Engineering at the University of 
Rochester Medical Center. My laboratory now consists of myself, Kelley Madden, a 
Research Assistant Professor in BME, and three graduate students, Ryan Burke in BME, 
Kelley Sullivan (formerly Dunbar) in Physics, and Xiaoxing Han in Optics. What follows 
is a discussion of our progress in each of the Tasks in our original Statement of Work, 
starting with those tasks that were scheduled to begin earliest, and finishing with later 
tasks. 
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Progress in Task 7. 
Chronologically, the earliest goals in my original Statement of Work are actually 
encompassed in tasks 7 and 9.  In its entirety, Task 7 is: 
 
Task 7.  Determine the relative contribution of convection versus diffusion in transport of 
fluorescent tracer out of a tumor vessel. (Years 1 and 2) 

A. Develop theory and perform in vitro tests of the ability of Multiphoton 
Fluorescence Recovery After Photobleaching (MPFRAP) to simultaneously 
measure diffusion and convection. 
B. Determine relative contribution of convection versus diffusion in transport out 
of a tumor vessel during steady state conditions. 
C. Determine relative contribution of convection versus diffusion in transport out 
of a tumor vessel after acute alteration in tumor vessel permeability. 

 
We began Year Two with work to streamline the MPFRAP procedure by building 

additional control equipment and by automating data taking and analysis steps.  We also 
verified several experimental parameters for which we had previously been substituting 
given/derived values.  Perhaps most significantly, we determined much of the range of 
velocities, diffusion coefficients and signal to noise ratios over which the MP-FRAP 
technique is valid. 

In order to reduce significant electrical noise in our first system, we designed and 
constructed a new control box to take over the switching mechanism previously provided 
by the pulse generator to toggle between bleach and monitor laser powers and select 
those powers with microsecond time resolution. This control box also increases the 
efficiency of adjusting the laser powers and aligning our Pockels Cell.  To reduce 
measurement time and increase throughput, we automated data generation and analysis 
procedures using an extensive series of LabVIEW and Matlab programs to run all the 
equipment and to collect, graph and export data (to file), and to analyze that data and 
produce fits.   

We have also verified several experimental parameters, including the point spread 
function (PSF) of our two-photon focal spot.  The PSF appears in the recovery equation 
and links two significant experimental variables, the characteristic diffusion time and the 
diffusion coefficient.  The theoretical value of the PSF for a properly over-filled lens is 
given by wr = 2.6λ/(2πNA), where λ is the wavelength of laser light and NA is the 
numerical aperture of the lens.  At an operating wavelength of 780nm and using a lens 
with a numerical aperture of 0.9, the theoretical PSF is 0.358µm.  Our experimental 
measurement of the PSF yielded a comparable 0.36µm.  This work has ensured that our 
system is functioning as expected. 

We have recently resumed testing of our newly reconstructed MP-FRAP system 
in vitro. Figure 1 shows a representative MP-FRAP recovery curve and associated fit 
generated with the new system.  Our preliminary data compare favorably with accepted 
values found in the literature.   
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Figure 1: 
A representative MP-FRAP recovery curve 
for 1 mg/ml FITC BSA in water and 
associated fit.   
 

 
Figure 2: 
Logarithmic plot of the bleach depth 
parameter, β, as a function of laser power.   
The line inserted on the graph indicates that 
β ~ P2.  The last data point can be seen to 
fall off from this line, and so represents the 
start of excitation saturation. Accurate 
MPFRAP is performed in the linear part of 
this curve. 
 

 
The MP-FRAP technique works by bleaching a region of interest and then 

monitoring the region as fluorescent molecules from outside the region diffuse in. In 
order to avoid bleaching during the monitor phase and excitation saturation during the 
bleaching phase, it is necessary to test several different monitor and bleach powers to set 
bounds on the laser powers that can be used for a give fluorescent probe and sample 
scattering depth. Excitation saturation describes the threshold beyond which increasing 
power to the sample yields diminishing returns in increased bleaching rates.  Below this 
threshold, the bleach depth parameter, β, scales as the square of the bleaching power.  
Figure 2 is a logarithmic plot of the bleach depth parameter as a function of the laser 
power for FITC-BSA in vitro. The line inserted on the graph indicates that β ~ P2.  The 
last data point can be seen to fall off from this line, and so represents the minimum power 
at which excitation saturation occurs.   

Our most significant undertaking of the past year has been a detailed theoretical 
study of the MP-FRAP recovery equation. This investigation began with the development 
of several MATLAB programs to generate and fit MP-FRAP data.  Data is generated 
using the MP-FRAP with flow model, and then Poisson distributed random noise is 
added in an amount relative to the desired signal to noise ratio. We fit the data using a 
regressive fitting algorithm. With that procedure we have been asking the pivotal 
question: When does velocity become important to the fit?  In other words, for what 
range of velocities does the convective flow significantly affect the characteristic 
diffusion time compared to that of a similar system without flow?  We can test this by 
generating noisy data according to the flow model, then fitting these data using the model 
without flow. Figure 3 shows the results of this analysis. The abcissa describes the 
quality of fit as the ratio of the fitted τD to the input τD used to generate the data.  The 
ordinate describes the span of normalized velocities over which the accuracy of the fit 
ranges from strong (τD fit / τD input ≈ 1) to poor (τD fit / τD input → 0). Six values of τD     
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for velocities ranging from 100 - 
1000µm/s, were used to generate the 
data points in the figure.  By inspection, 
we see that a good fit (τD fit / τD input ≥ 
0.9) is achieved when the convective 
flow velocity is less than 0.05 (wr/τD). 

In year three, we will extend this 
analysis for other S/N ratios, then 
complete our theoretical analysis by 
determining what ranges of D,V,β, and 
S/N produce good fits for both D and V.  
This theoretical analysis will be 
accompanied by the experimental 
analysis described in the original tasks, 
now that the MPFRAP equipment is in 
its final, fully automated form. This task 
is behind schedule, but I anticipate its 
completion in Year 3. 

 
 

Progress in Task 9. 
 The other early Task in the original Statement of Work is Task 9, which in its 
entirety is: 
 
Task 9.  Establish a reproducible measure of photodamage during a permeability 
measurement. (Years 1 and 2) 

A. Evaluate systematic alterations in the fluorescence-versus-time curve as a 
reproducible measure of photodamage during permeability measurements. 
B. Evaluate successive permeability measurements with distinct markers as a 
reproducible measure of photodamage during permeability measurements. 
C. Evaluate second harmonic imaging of the adjacent matrix as a reproducible 
measure of photodamage during permeability measurements. 

 
In pursuit of this task we evaluated second harmonic generation (SHG) signal 

from the extracellular matrix as a tool to measure photodamage during permeability 
measurements, as well as during MPFRAP measurements. The three fundamental optical 
properties we investigated were the backscattered SHG intensity, the ratio of forward 
scattered SHG to backscattered SHG, and “rho”, a measure of the axial polarizing effects 
of collagen fibers. During this investigation of SHG signatures of breast tumor collagen, 
we realized that SHG can produce significant useful biological information about the 
matrix of the breast tumor in addition to being a measure of photodamage during MPSVP 
or MPFRAP.  I will therefore discuss each of these three SHG properties in order, and 
focus on the interesting new directions we took our explorations, and why we did so: 
 

 
Figure 3: 
Quality of fit for the characteristic diffusion 
time, τD, relative to a scaled velocity axis.  
The legend lists the values of the diffusion 
time used to generate the data.  Error bars 
represent +/- 1 standard deviation.   
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Backscattered SHG Intensity Imaging of Fixed Pathology Specimens of Breast Tumors. 
 In discussions with Dr. Ping Tang of the Department of Pathology, we learned 
that there was currently no method available to predict which patients with identified 
Invasive Ductal Carcinoma would and would not metastasize. Based upon our experience 
with relaxin, and the fact that relaxin treatment simultaneously altered the SHG signature 
of tumors in mice1 while increasing tumors’ metastatic ability2, we hypothesized that the 
metastatic ability of IDC tumors might be revealed in their SHG signatures. We 
quantified the average backscattered SHG intensity from 5 identified IDC regions in each 
of 7 thin fixed pathology sections (35 regions total) from patients whose IDCs had led to 
metastases, and an identical number from patients whose IDCs had not yet led to 
detectable metastases. Unfortunately, after some promising initial results, we found that 
there was no statistically significant difference between the backscattered SHG intensity 
of the two groups (661±212, N=35 IDC with Mets, 718±312, N=35 IDC without Mets), 
nor between the fractional area of SHG fibers above an arbitrary (but common) threshold 
(0.078±0.048, N=35 IDC with Mets, 0.089±0.082, N=35 IDC without Mets). 
 
Fig 4 a) SHG image of fixed 
human breast tumor section  
b) Digital camera picture of the 
same region in transmitted light, 
H and E stain. 
 

 
 
We also determine that backscattered SHG did not distinguish between high grade and 
low grade DCIS (data not shown) nor between DCIS and IDC (data not shown). 
 
Forward/Backwards Ratio of Fixed Pathology Specimens of Breast Tumors. 
  We also investigated the forward- versus backwards- scattering properties of 
breast tumor specimens. The ratio of forwards-scattered versus backwards-scattered 
signal (the F/B ratio) reveals the axial extent of the scattering structures. Historically 
when SHG is investigated in biological samples it is mainly applied to the rat tail tendon, 
an ideal sample of many well-aligned fibers of collagen I. In rat tails, Williams et al. 
showed that the F/B ratio was uniformly close to 1 even in fibers of widely varying 
diameters3, an apparent contradiction solved by the determination that in that sample the 
fibers were only aligned (and hence SHG scatterers) in a thin shell around their surface, 
while their central cores were disordered (and hence not scattering). The F/B ratio 
remained 1 for different apparent fiber diameters because the thickness of the ordered 
shell was unchanged.  
 In our early explorations of SHG as a sensitive measure of photodamage, we 
hypothesized that F/B ratio may be a more sensitive indicator of matrix breakdown (due 
to its sensitivity to ordering) than backscattered SHG intensity. Figure 5 shows an F/B 
image of a thin section of a TG1-1 mouse mammary tumor grown in the mammary fat 
pad. Note the presence of a rich heterogeneous structure, with numerous fibers that are 
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significantly forward scattering (F/B can often exceed 10 in these samples). This is in 
marked contrast to the rat tail data with F/B ratio uniformly close to 1 in all fibers.  

These observations led us to realize that 
F/B ratio could be used to reveal new 
information about the processes of collagen 
synthesis and degradation with extremely high 
spatial resolution. Based upon our 
aforementioned discussions with Dr. Ping Tang, 
we are particularly interested in the insight SHG 
can produce into tumor metastatic ability. Our 
2003 relaxin results suggest a relationship 
between collagen turnover and metastasis, while 
collagen turnover is likely to affect the ordering 
of individual collagen fibers: therefore we 
hypothesize that collagen metastatic ability will 
be related to the F/B ratio. We quantified the 
F/B ratio in five thin fixed sections of biopsies 
from patients with IDC, three with metastases 
and two without. There was no statistically 
significant difference in this preliminary data 

set: Mean F/B with met 18.3±11.1 (N=15) vs. mean F/B without met 20.5±12.3 (N=10), 
but we plan on testing our full sample set anyway, as well as explore unfixed tissue 
sections. 
 
Polarization measurements of mouse collagen. 
 Our most significant efforts went into the measurement of the axial polarization 
effects of breast tumor collagen. In rat tail collagen Williams et al. and others have 
demonstrated that the angle between the polarization of the incoming laser and the 
collagen fiber, Θ, and the polarization of the outgoing SHG signal can be related by a 
simple equation: 
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Where Iy and Ix are the polarization of the SHG signal parallel and perpendicular to the 
fiber, and rho is a fitting parameter. In certain symmetry conditions (i.e. a cylindrically 
symmetric distribution of single axis molecules, such as in fibrillar collagen4) rho is the 
ratio of the two independent elements of the hyperpolarizability matrix relating the 
incoming E field to the polarization of the fiber. Plotnikov et al. showed that rho is 
dictated by the angular orientation of the SHG scatterers (i.e. the collagen triple helix) 
relative to the fiber axis4, so we hypothesized that this parameter could be an early 
indicator of subtle matrix damage during MPFRAP or SFAFRAP. Our first 
measurements were control measurements, where we measured rho in mouse tail 
collagen and compared to the literature. Interestingly, we measured a value of 1.27±0.31 
(N=18) for mouse tail, versus the literature value3 for rat tail collagen of 2.6±0.2. We 
subsequently confirmed that we do indeed get values comparable to literature values for 

 
Fig 5. Forwards/Backwards SHG 
ratio of fresh TG1-1 tumor sections 
from a FVB mouse 
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rat tail collagen (2.43±.31 N=12), which means that there is something intrinsically 
different between the axial polarizability of mouse tail versus rat tail collagen.  

Our first hypothesis was that this difference in rho was due to a difference in the 
collagen 3 content, as literature suggests that collagen 3 content directly alters the angular 
orientation of triple helices in the overall fiber5. However, rho measurements in the 
mouse colon, which is known to contain a significant amount of collagen 35, produce the 
same rho (P=0.27) as in the mouse tail (1.14±0.4, N=25). Our current hypothesis is that 
intrinsic differences in the sequences of the collagen molecules, on a genetic level, 
produce these differences in rho. This suggests that even in pathological conditions such 
as breast cancer, the rho values in the tumor collagen will be indistinguishable from that 
in the host tissue. This has proven to be true: rho in collagen from TG1-1 mouse tumors 
grown in the mammary fat pad is indistinguishable from rho in the fat pad itself, and both 
are indistinguishable from the tail and colon data (TG1-1 rho: 1.23±0.39 N=20 and MFP 
rho: 1.44±0.25 N=5, P=0.24) (See Figure 6).  Therefore, we believe that rho 
measurements are unlikely to offer any ability to detect tumor tissue (i.e. based upon 
differences in rho), but instead these results reveal that, in spite of the substantial 
difference in overall ECM density, MMP activity, etc., in tumor versus healthy tissue, the 
underlying collagen construction machinery is unchanged. 

  
Figure 6a. SHG image of 
collagen in a TG1-1 tumor 
grown in the mammary fat 
pad. 

Figure 6b. SHG image of 
collagen in the mammary 
fat pad. 

Figure 6c. Radar plot of 
signal vs. analyzer angle, 
used to determine rho.  

 Overall, this Task is behind schedule, because much of the effort that was 
originally devoted to determining how SHG can provide a measure of photodamage 
during MPFRAP has been diverted into extremely interesting exploration of the basic 
biology that optical properties of SHG signal reveal about the breast tumor ECM. We 
have learned that backscattered SHG intensity from fixed sections does not provide 
diagnostic information about the likelihood of a given IDC forming metastases, and that 
the axial polarizability of collagen seems to be a constant for all the collagen in a given 
animal. We have also learned that there is a rich heterogeneous structure apparent in the 
forwards/backwards ratio images of tumor collagen and that this forwards/backwards 
ratio may provide detailed information about the ordering properties of tumor collagen 
with high spatial resolution.  
 These observations formed the basis of a successful application for a prestigious  
Pew Young Investigator Award in the Biomedical Sciences. In that award we proposed to 
use forwards/backwards SHG imaging to understand the role of collagen structure in 
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breast tumor metastasis, and determine if one of several forwards/backwards imaging 
devices we will produce will allow us to predict metastatic ability in breast tumors. As a 
result of winning this award, exploration of these complex SHG properties in breast 
tumors will be “spun off” into a new project under that grant, and we can return to the 
original goal of this Task, to measure photodamage during an MPFRAP or SVP 
experiment. 
 
Progress in Task 8. 
Chronologically, the next Task in the Statement of Work is Task 8, which in its entirety 
is:  
Task 8. Establish the allowed volume for accurate permeability measurements in the 
parameter space of i) average vessel permeability, ii) average tissue diffusion coefficient 
of fluorescent tracer, and iii) mean distance between vessels. (Years 2 and 3) 

A. Perform extensive mathematical modeling to determine the allowed volume in 
parameter space. 
B. Perform measurements of permeability, diffusion coefficients, and intravessel 
distances in tumor vessels to test the predictions of the model. 
C. Determine where in parameter space, on average, several key experimental 
tumor types lie. 

 
We have devoted the first year on this Task to aim A. We have determined the 

correct mathematical model of the concentration profile of a tumor vessel extravasating a 
fluorescent tracer. The geometry of this model, a region bounded internally by a 
cylindrical surface, reflects the geometry of the space in a tumor immediately 
surrounding a tumor vessel.  The equation for this concentration profile as a function of 
time and radial distance is as follows: 
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This equation is a truncated infinite series, in which only the first three terms were 
found to make a significant contribution to the overall result.  The parameter Ci, the 
interstitial concentration of fluorescent tracer at the external surface of the vessel wall, is 
calculated by the following equation: 
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The parameter Cp in this equation is the plasma (intravenous) concentration of 
fluorescent tracer, which is estimated at 1.47 nM based on the average volume of blood 
present in an adult mouse and the amount of fluorescent tracer typically injected into the 
mouse during a permeability experiment.  Pe, a dimensionless number relating advection 
to diffusion, has been discovered by Sarelius et al to be on the order of .1 for venules and 
.2 for arterioles6.  An intermediate value of .15 was chosen for the purposes of this model.  
σ, the reflection coefficient, is a quantity that takes into account the physical hindrance 
that the vessel wall affords to macromolecular diffusion.  In vessels of the skin (the most 
appropriate location given our in vivo imaging techniques), Reed et al determined σ to be 
approximately .94, which was the value used in this model as well7.  Given these 
parameters, Ci is calculated as 0.46 nM. 
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The computer program MATLAB was used to calculate concentration profiles for 
tumor vessels with various average tissue diffusion coefficients reflecting those found in 
several commonly studied tumor lines when perfused with FITC-BSA in a permeability 
experiment8.  The profiles were calculated by MATLAB, then integrated to yield the total 
number of moles of fluorescent tracer released over the chosen time period.  As tumor 
vessels are on average approximately 10 microns in diameter and set in 50 um opposition 
to one another, profiles were calculated for two vessels fitting these criteria to determine 
the extent to which extravasated material from the two vessels overlaps.  This overlap 
would result in a higher measurement of fluorescent intensity, which in turn results in 
erroneously high measurements of vascular permeability. Figure 7 represents a typical 

calculated concentration profile of vessels 
from a U87 glioma, which has a FITC-BSA 
diffusion coefficient of 2.2x10-7 cm2/s. This 
relatively low interstitial diffusion 
coefficient produces a ~3% overlap in 
extravasation at the 15 second time point 
chosen (a typical observation time for 
MPSVP measurements). As the interstitial 
diffusion coefficient increases, the 
percentage overlap (and hence expected 
error in MPSVP measurements) increases: 
HSTS26T human soft tissue sarcoma, with a 
FITC-BSA diffusion coefficient of 3.5x10-7 
cm2/s has ~7% overlap, while LS174T 
human colorectal carcinoma or MCaIV 
murine mammary adenocarcinoma, with a 
FITC-BSA diffusion coefficient of 4.5x10-7 
cm2/s has a ~10% overlap. 

 This series of calculations show that in all considered cases of average tissue 
diffusion coefficient, some error in the measurement of permeability is to be expected 
when measuring the fluorescent intensity in the interstitium between two tumor vessels.  
This amounts to approximately a 10% overage in the low-collagen, high-diffusion 
LS174T and MCaIV tumors. As relative collagen content of tumors can be measured in 
vivo using our techniques for quantitation of second harmonic generation signal or 
chemical methods, it is possible to predict approximately how much overlap will be 
present in any given tumor line.  Figure 8 illustrates this concept. 

If we allow for a maximum overlap error of 10% as a metric for determining 
whether or not a permeability measurement is accurate, we find that distance between 
vessels has a marked effect on the extent to which the permeability measurement can be 
compromised.  This effect was studied by varying the distance between vessels assuming 
a U87 glioma (D = 2.2x10-7 cm2/s) as the tumor of interest – a type chosen for its low 
levels of predicted overlap at physiological norms as shown in Figure 7.  Figure 9 shows 
the increases in percent overlap as intravascular distance decreases in U87 glioma.  

This series of calculations shows that variation in overlap error is much more 
dramatic when vessel distance is the altered parameter (as opposed to the previous series 
in which diffusion coefficient is altered).  As tumor vascular beds are by nature chaotic 

 
Figure 7: 10-um diameter vessels at 50 
um separation in a hypothetical U87 
glioma, with a FITC-BSA diffusion 
coefficient of 2.2x10-7 cm2/s.   
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and unpatterned, all of these intravascular distances are reasonably likely to be present in 
a given tumor.  This relation indicates that if we wish to maintain a maximum of 10% 
error in the permeability measurement for a low-diffusion tumor type such as U87 
glioma, vessels measured for permeability cannot be closer than approximately 35 um 
from their nearest neighbor. This number will by necessity increase when faced with 
higher-diffusion tumor types such as MCaIV and LS174T.   

Overall, we have made significant progress in Task 8, which in the original 
statement of work was expected to commence in the beginning of year 2 and finish at the 
end of year 3. With the most onerous portion of that Task, Aim 8A, almost complete, in 
my estimation this Task is slightly ahead of schedule.  
 

 
 

Figure 8:  Plot of calculated overlap error 
in permeability measurement versus 
interstitial matrix (IM) collagen content. 
Several of our standard tumor models lie in 
this range (LS174T, MCaIV, HSTS, and 
U87). Calculated for 10 um vessels spaced 
50 um apart, at 15 seconds after injection. 

Figure 9: Plot of expected percent error in 
permeability measurement as a function of 
intravascular distance in U87 glioma. 
 

 
Progress in Tasks 1-6.  
 The other Tasks in the original Statement of Work are intended to start in year 3 
or later, but we have already made substantive progress on several of them. All six of 
these upcoming tasks have three key common steps: the growth of tumors in dorsal 
skinfold chambers, the loading of ECs in those tumors with a fluorescent calcium 
indicator, and the stable perfusion of pharmacological agents onto those samples without 
motion artifacts. These three steps, and their consistent and reproducible performance, 
has absorbed the lion’s share of our time over the past year, as many of the “temporary” 
practices and techniques used to originally perform these tasks have proven unsuitable for 
consistent “mass production” of data by multiple laboratory members.  

Dorsal skinfold chambers: Generating decent dorsal skinfold chambers in 
sufficient numbers has proven to be one of the key stumbling blocks. Originally only the 
PI, Edward Brown, had the necessary years of practice to produce good chambers, and 
while those were sufficient for our first year of growing the lab, it has been necessary to 
devote significant amounts of time every week for the other lab personnel to practice this 
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difficult surgery. Two lab members are now consistently able to produce good chambers, 
while the other two still need more practice. We are also hiring a laboratory technician 
who will devote two days or more per week solely to making chambers, although they 
will probably not be of sufficient quality to use for another six months to a year.  

Loading ECs in vivo with fluorescent indicator dye: Generating consistent, 
reproducible loading of TECs with a calcium indicator dye has also proven to be a 
hurdle. After extensive practice and modification of the recipes we are now able to get 
more consistent (but still far from perfect: we will likely always be tweaking this recipe) 
loading of TECs in vivo (Figure 10). Interestingly, we have found that fura preferentially 
loads ECs in the healthy skin of the dorsal skinfold chamber: if this holds true in tumors, 
many of our previous plans to utilize TIE2-GFP mice as well as complex FRET based 
genetic indicators will be moot.  

Stable perfusion of reagents: Our previous method of manual pippetting of 
reagents onto the sample dish or dorsal skinfold chamber produced a level of sample 
motion that was incompatible with the high optical sectioning of the MPLSM. As will be 
discussed in Task 2 below, this was solved with purchase of, and extensive practice with, 
a new multichannel perfusion system. This has allowed us to generate requisite 
preliminary data for Tasks 1-6, such as dose-response curves for ECs in vitro, as shown 
in Figure 11. 

  
Figure 10. MPLSM image of in vivo 
ECs labeled with fura application. The 
exposed skin of a dorsal skinfold 
chamber was treated with fura loading 
solution then washed. A branched 
network of vessels with labeled ECs is 
visible in the lower right. Image is 
600 microns across. 

Figure 11. Dose-response curve of fura-loaded 
BAECs to VEGF in vitro. Our new perfusion 
system allows stable application of reagents and 
hence the production of data such as this. The 
mean FL intensity of cells at 80% confluence 
was used, and the last 20 scans of the time series 
(after VEGF) was divided by the mean FL 
intensity of the first 20 scans (before VEGF).  

 
I will now discuss specific progress related to two particular tasks. 
Task 1, in its entirety, is: 
 
Task 1. Determine role of external calcium influx on translation of VEGFR2 activation 
to tumor endothelial cell (TEC) calcium signals and tumor vessel permeability. (Year 3)  
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A. Apply NiCl (blocks plasmalemmal calcium channels) and CaCl2 to a tumor 
vessel via pipette and observe the TEC calcium response and subsequent 
permeability change. 
B. Elevate TEC calcium and vascular permeability with extrinsic VEGF then 
attempt to block this elevation by repeating with NiCl. 
C. Reduce TEC calcium and vascular permeability with VEGF blockade and 
attempt to recover baseline calcium and permeability with CaCl2. 

 
 As stated in last year’s progress report, in vitro pilot studies corresponding to each 
of the in vivo tasks relating to the development of pharmacological reagents to impede 
angiogenic signaling must be undertaken as appropriate controls and standards for 
comparison.  Task 1A, the application of NiCl2 to endothelial cells to determine the effect 
of external calcium influx on angiogenic signaling, is the subject of one of these pilot 
studies.  Divalent nickel as a cation is physiologically harmful to cells at elevated levels 
in both acute and chronic exposures, but it is suggested by at least one group engaged in 
cationic blockade studies that levels as high as 2 mM are required for successful block of 
plasmalemmal calcium channels9.  To determine the effect of these high NiCl2 levels on 
the health of the endothelial cells studied, viability assays were performed on bovine 
aortic endothelial cells (BAECs) and immortalized mouse pancreatic endothelial cells 
that produce hemangiomas (MS1/SVEN1 line).  The goal of this study was to determine 
the acute toxicity level of divalent nickel on normal and tumor endothelial cells, as well 
as to determine whether or not TECs would exhibit behavior different from normal ECs 
when exposed to divalent nickel.  Figures 12A and 12B are tables of percent viability as 
assayed by trypan blue exclusion.  
Figure 12a Percent viability as a function 
of nickel concentration in BAECs. Each 
concentration was assayed in 
quadruplicate, for a total n=24 in 6 
groups of n=4.  Nickel chloride was 
added in solution in growth medium and 
cells were exposed to the medium for 30 
minutes, then washed once.  The trypan 
blue stain was performed on trypsinized 
cells seeded in a 24-well plate at 1x105 
cells per well.  
Figure 12b Percent viability as a function 
of nickel concentration in MS1/SVEN1 
ECs.  
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 It is clear from these two figures that viability of endothelial cells is decreased by 
a statistically significant amount by the use of 1 mM NiCl2 solution in medium regardless 
of the origin of the endothelial cells (primary or immortalized).  The end result of this 
assay was to determine that a concentration of 0.1 mM, or one-tenth that suggested for 
successful cationic block, was more appropriate to use in a physiological setting.  
Likewise, these results seem to suggest that normal and tumor-derived endothelial cells 
have similar tolerances for acute divalent nickel exposure. 
 Subsequent to the establishment of safe levels of divalent nickel for use in the in 
vitro pilot study for Task 1, an experiment was performed to determine the extent to 
which safe levels of divalent nickel was actually able to block extracellular calcium 
influx in immortalized MS1/SVEN1 murine pancreatic endothelial cells.  MS1/SVEN1 
cells at 1x105 cells per well in a 96-well plate were loaded with the calcium indicator dye 
Fluo-4 and subjected to three treatment regimens (n=15 each): control (saline only), 30 
uM Na-ATP to induce extracellular calcium influx, and 30 um Na-ATP with .1 mM 
NiCl2.  Reagents were manually pipetted at 100 uL/well and the plate was excited at 480 
nm (bandpass of 20 nm).  Fluorescent intensities were collected at 530 nm (bandpass of 
20 nm).  Figure 13 shows the results, revealing that these low but safe levels of NiCl2 are 
sufficient to block influx of external calcium. 
 
Figure 13. Demonstration that safe levels 
of NiCl2 can block ATP induced influx of 
external calcium in BAECs. ATP alone is 
statistically significantly different from 
both Control and ATP+NiCl (P<0.0001). 

 
Task 2, in its entirety, is: 
 
Task 2. To determine the role of diacylglycerol (DAG) in translation of VEGFR2 
activation to TEC calcium signals and tumor vessel permeability. (Year 3) 

A.  Apply OAG (a DAG analog) and U73122 (a PLCγ inhibitor) and observe the 
calcium response in TECs as well as monitor subsequent vascular permeability 
changes. 
B. Elevate TEC calcium and vascular permeability with extrinsic VEGF via 
pipette administration, and attempt to block this elevation by repeating with DAG 
inhibitor. 
C. Reduce TEC calcium levels and vascular permeability with VEGF blockade, 
and attempt to recover baseline TEC calcium and vascular permeability with 
OAG. 

 
In pursuit of this task we have been investigating the application of OAG, VEGF, 

and U73122 to BAECs in vitro and monitoring the subsequent calcium response. One of 
the most time-consuming parts of this has been the construction and practice using a 
complex multichannel perfusion system, as we found that manual pipetting of reagents 
produced sample motion that was incompatible with the extremely fine optical sectioning 
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of the MPLSM. Figure 14 shows a typical calcium response after application of OAG, 
with subsequent recovery after OAG removal, using the new perfusion system.  
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Figure 14a. OAG, a diacylglycerol 
analog, increases calcium in fura- 
loaded bovine aortic endothelial cells. 
This increase in calcium is represented 
by a decrease in fura fluorescence. 
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Figure 14b. After washout of OAG, 
fura fluorescence recovers to previous 
values. 
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Figure 14c. VEGF increases calcium in 
fura-loaded bovine aortic endothelial 
cells. The blue line is two contiguous 
cells, the remaining lines are individual 
cells. This increase in calcium is 
represented by a decrease in fura 
fluorescence. 
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Figure 14d. Pre-incubation of BAECs 
with 25 µM U73122 prevents the 
response to VEGF. 

These results demonstrate 1) that these levels of OAG, VEGF, and U73122 can induce 
and block a calcium response in BAECs and hence suggest that they are suitable levels 
for use with tumor endothelial cells 2) that BAECS have the machinery to respond to 
intrinsic DAG signals, and that VEGF utilizes PLCgamma to induce its calcium response 
in this cell type 3) that our MPLSM can record long-time-trace calcium signals with fura 
fluorescence without significant photobleaching, and 4) we can do so without sample 
motion artifacts when reagents are perfused. 
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Key Research Accomplishments in the previous year: 
1) Made significant progress in Task 7, by construction and testing of the final form of 
the MPFRAP rig, measurement of key experimental parameters, and theoretical analysis 
of the effects of different flows on the fitting error using a diffusion-only formula. 
 
2) Made significant progress in Task 8, by determination of the formula describing the 
concentration of fluorescent dye outside of a vessel, and use of that formula to evaluate 
the concentration of indicator apparently from the vessel studied with MPSVP that is 
actually from adjacent vessels (hence producing errors in the measured permeability) and 
an analysis of this error due to variations in diffusive hindrance and vessel proximity. 
 
3) Utilized work on Task 9c (the evaluation of second harmonic imaging of the local 
matrix as a reproducible measure of photodamage during MPFRAP and permeability 
measurements) to commence a new, funded, research program investigating the complex 
optical signatures of SHG in breast tumor tissue, its relationship to breast tumor 
metastasis, and its ability to predict metastatic ability. 
 
4) Performed extensive training and practice in dorsal skinfold chamber production, 
evaluation of TEC dye loading, and development of protocols for a new perfusion 
system, which will allow reproducible results in Tasks 1-6, which are only scheduled to 
commence now.  
 
5) Produced important preliminary data for upcoming Tasks 1 and 2.  
 
Reportable Outcomes: 
Over the past year I have given two invited talks, one of which was part of the BCRP 
LINKS meeting for this grant: 
 
“Angiogenic Signaling in Living Breast Tumor Models” Invited lecture presented at the 

BCRP LINKS meeting, Baltimore, MD, 2006 
 
“Multiphoton Laser-Scanning Microscopy of Tumor biology” Invited lecture presented at 

the Department of Physics, Ithaca College, Ithaca, NY, 2007 
 

I have also won two grants while supported by this award. The first, “The 
influence of neuronal activity on breast tumor metastasis to the brain” is a Department of 
Defence BCRP Synergistic Idea Award in which I am co-PI with 20% effort. This two 
year $250k direct cost award has as its goal to utilize insights gained from the study of 
dendritic spine motility to discover novel reagents that inhibit breast tumor metastases in 
the brain. This represents a collaboration between myself and Dr. Ania Majewska of the 
Department of Neurobiology and Behavior.  
 The second grant is “Dynamic in vivo imaging and quantification of collagen 
microstructure and turnover in breast tumor models.” This is a prestigious Pew Scholar in 
the Biomedical Sciences Award in which I am PI with 9% effort. This four year $250k 
direct costs award has as its goal to investigate collagen turnover in breast tumor models 
using novel microscopy techniques. This is specifically a “spin-off” of our work on Task 
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9, where we used SHG imaging to study the breast tumor extracellular matrix during 
permeability and MPFRAP measurements. We will now use SHG to understand the 
relationship between the tumor ECM and metastasis. 

I feel that the content of these grant applications are noteworthy in that they show 
that the Era of hope Scholar Award has produced a long-term commitment to breast 
cancer research in my laboratory and has allowed me to attract other scientists (i..e. Dr. 
Majewska of the Department of Neurobiology and Anatomy, P.I. of the aforementioned 
Synergistic Idea Award application) to breast cancer research. 
 
Conclusion 

Overall we are behind schedule in two Tasks (one of which has “spun off” an 
entirely new funded avenue of breast cancer research for the lab), slightly ahead of 
schedule in one Task, and significantly ahead of schedule in six Tasks. In conclusion, I 
believe that I have made significant progress on the goals outlined in my Era of Hope 
Scholar Award.  
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Invited Lectures 
"3D-Resolved Uncaging of Calcium Using Two-Photon Excitation." Invited lecture presented at 
 Max Planck Institut fur Biophysikalische Chemie. Gottingen, Germany, 1997.  
“ Uncaging Using Two-Photon Microscopy.” Invited lecture presented at Universitat des 
 Saarlandes, Homburg, Germany, 1997. 
“ Quantitative Photochemical Applications of Multiphoton Laser-Scanning Microscopy.” Invited 
 lecture presented at Wake Forest University Dept. of Physics, Winston-Salem, NC, 1999. 
“ Quantitative Photochemical Applications of Multiphoton Laser-Scanning Microscopy.” Invited 
 lecture presented at Harvard University Dept. of Physics, Cambridge, MA, 1999. 
“ Quantitative Photochemical Applications of Multiphoton Laser Scanning Microscopy.” and “ In 
 Vivo Measurement of Tumor Angiogenesis, Gene Expression, and Physiological Function 
 Using the MPLSM” Invited lectures presented at Wellman Laboratory, MGH, Boston, 
 MA, 2000. 
“ Measurement of physiological parameters in tumors in vivo using MPLSM.” Invited lecture 
 presented at the SPIE meeting on Progress in Biomedical Optics and Imaging, San Jose, 
 CA, 2001.  Published as: Brown E, Campbell R, Tsuzuki Y, Fukumura D, Jain RK.  
 Measurement of physiological parameters in tumors in vivo using MPLSM. In: Periasamy 
 A, So PTC, (eds). Progress in Biomedical Optics and Imaging. Proceedings of SPIE vol. 
 4262 Jan 21-23, Bellingham, Washington. SPIE; 2001 p. 134-146. 
“ Molecular Imaging of VEGF and HIF1 alpha.” Invited lecture presented at the RCCA 
 symposium, Dana-Farber Cancer Institute, Boston, MA, 2001. 
“ Quantitative Photochemical Applications of Multiphoton Laser-Scanning Microscopy.” Invited 
 lecture presented at the Renal Unit, MGH, Boston, MA, 2001. 
“ Microscopy of Living Tumors” Invited lecture presented at the CenSSIS Research and 
 Industrial Collaboration Conference, Northeastern University, Boston, MA, 2002. 
“ Nonlinear Optical Microscopy of Tumors” Invited lecture presented at the Northeast Proton 
 Center, Boston, MA, 2002. 
“Dynamic Imaging of Collagen Content and Structure in Tumors Using Second Harmonic 
 Generation.” Short Talk presented at the SPIE meeting on Progress in Biomedical Optics 
 and Imaging, San Jose, CA, 2003. 
“Dynamic Imaging of Collagen in Tumors in vivo Using Second Harmonic Generation.” Short 
 Talk presented at the Keystone Symposium on Optical Imaging: Applications to Biology 
 and Medicine, Taos, NM, 2003.  
"Multiphoton Imaging of Tumor Biology and Angiogenesis" Invited lecture presented at the 
 Department of Molecular Therapeutics, MD Anderson Cancer Center, Houston, TX, 2003 
"Two Photon Imaging of Tumors" Invited lecture presented at the Department of Anatomy and 
 Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 2003 
"Two Photon Imaging of Tumors" Invited lecture presented at the Department of Cell Biology, 
 Yale University School of Medicine, New Haven, CT, 2003 
"Two Photon Imaging of Tumors" Invited lecture presented at the Bioengineering Division, 
 University of California-San Francisco, San Francisco, CA, 2003 
"Two Photon Imaging of Tumors" Invited lecture presented at the Department of Radiation 
 Oncology, University of Cincinnati, Cincinnati, OH, 2003 
"Two Photon Imaging of Tumors" Invited lecture presented at the Department of Radiation 
 Oncology, University of Michigan, Ann Arbor, MI, 2003 
"Two Photon Imaging of Tumors" Invited lecture presented at the Department of Biochemistry 
 and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC, 2003 
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"Two Photon Imaging of Tumors" Invited lecture presented at the Department of Radiology, 
 University of Utah, Salt Lake City, UT 2003 
"Tumor Pathophysiology Studied with the Multiphoton Laser-Scanning Microscope" Invited 
 lecture presented at the Microscopy and Microanalysis Symposium: Advances in 
 Quantitative Optical Microscopy, a Symposium in Honor of Watt Webb. San Antonio, TX, 
 2003. 
"Diverse Imaging Processing Challenges in Radiation Oncology" Invited lecture presented at the 
 Image Processing Mini-workshop, Massachusetts General Hospital, Boston, MA, 2004 
"Multiphoton Imaging of Tumor Biology and Angiogenesis" Invited lecture presented at the 
 Interdepartmental Program in Vascular Biology and Transplantation, Yale Medical 
 School, New Haven, CT, 2004  
"Can Antitumor Therapy be Improved with Multiphoton Laser-Scanning Microscopy?" Invited 
 lecture presented at the Department of Biomedical Engineering, Yale University, New 
 Haven, CT, 2004 
"Nonlinear Optical Microscopy of Tumors" Invited lecture presented at the Biomedical Optical 
 Spectroscopy, Imaging & Diagnostics Topical Meeting of the Optical Society of America. 
 Miami, FL, 2004 
"Can Antitumor Therapy be Improved with Multiphoton Laser-Scanning Microscopy?" Invited 
 lecture presented at the Department of Cancer Biology, Vanderbilt University, Nashville, 
 TN, 2004  
"Can Antitumor Therapy be Improved with Multiphoton Laser-Scanning Microscopy?" Invited 
 lecture presented at the International Institute of Molecular and Cellular Biology, Warsaw, 
 Poland, 2004  
"Can Antitumor Therapy be Improved with Multiphoton Laser-Scanning Microscopy?" Invited 
 lecture presented at the Department of Bioengineering, PAN, Warsaw, Poland, 2004 
"Can Antitumor Therapy be Improved with Multiphoton Laser-Scanning Microscopy?" Invited 
 lecture presented at the Department of Biomedical Engineering, Cornell University, 
 Ithaca, NY, 2004 
"Multiphoton Imaging of Tumor Biology and Angiogenesis." Invited lecture presented at the 
 Department of Biomedical Engineering, University of Rochester Medical Center, 
 Rochester, NY, 2004 

"Measurement of Diffusion Coefficients in Vivo: Why and How?" Invited lecture presented at the 
 Department of Physics, Creighton University, Omaha, Nebraska, 2004 
"Tumor Photobiology" Invited lecture presented at the First Annual Symposium on Modern 
 Imaging and Biophysical Methods in Cell Biology and Neuroscience. Creighton 
 University, Omaha, Nebraska, 2004 
"Multiphoton Imaging of Tumor Pathopysiology" Invited lecture presented at the Center for 

Engineering in Medicine, Shriners Hospitals for Children, Boston, MA, 2004 
“High Resolution Imaging of Tumor Biology and Treatment” Invited lecture presented at the 

Engineering Foundation’s Advances in Optics for Biotechnology, Medicine, and Surgery, 
Breckenridge, CO, 2005 

“Nonlinear Microscopy of Living Tumors and Their Treatment” Invited lecture presented at the 
IEEE International Symposium on Biomedical Imaging, Arlington, VA, 2006 

“Angiogenic Signaling in Living Breast Tumor Models” Invited lecture presented at the BCRP 
LINKS meeting, Baltimore, MD, 2006 

“Multiphoton Laser-Scanning Microscopy of Tumor biology” Invited lecture presented at the 
Department of Physics, Ithaca College, Ithaca, NY, 2007 
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Selected Abstracts 
Shear J, Brown E , Adams S, Tsien R, Webb W.  Two-photon excited photorelease of caged 

calcium. Annual Meeting of the Biophysical Society. 1996. 
Brown E , Ellis-Davies G, Webb W.  Quantitative two-photon calcium uncaging. Annual Meeting 

of the Biophysical Society 1998. 
Majewska A, Brown E , Yuste R.  Mechanism of calcium decay kinetics in spines from 

hippocampal pyramidal neurons. Society for Neuroscience Abstracts, 1999. 
Brown E , Pluen A, Compton C, Boucher Y, Jain RK.  Measurement of diffusion coefficients of 

spontaneous human tumors. Annual Meeting of the American Association for Cancer 
Research, 2000. 

Padera T, Kadambi A, Stoll B, di Tomaso E, Mouta-Carreira C, Brown E , Munn L, Jain RK. 
Multiphoton imaging of VEGF-C induced peri-tumor lymphatic hyperplasia. Gordon Research 
Conference on Angiogenesis and Microcirculation, 2001. 

Brown E , Boucher Y, Jain RK. Measurement of diffusion coefficients in spontaneous human 
tumors. Annual Meeting of the American Association for Cancer Research, 2002. 

Campbell R, Brown E , Izumi Y, Mazzola L, Torchilin V, Fukumura D, Munn L, Jain RK. 
Interactions of PEGylated cationic liposomes with tumor vessels in mice. Annual Meeting of 
the American Association for Cancer Research, 2002. 

Brown E , Fukumura D, Munn L, Jain RK. Imaging the motion of host cells in tumors in vivo 
using intravital microscopy. Annual Meeting of the Molecular Imaging Society 2002. 

Abdul-Karim M, Al-Kofahi O, Brown E , Jain RK, Al-Kofahi K, Turner J, Roysam B.  Automated 
in vivo change analysis of tumor vasculature from two-photon confocal image time series.  
SPIE meeting on Progress in Biomedical Optics and Imaging, 2003. 

Brown E , McKee T, Pluen A, Boucher Y, Jain RK.  Dynamic imaging of collagen content and 
structure in tumors using second harmonic generation. International Society for Optical 
Engineering Meeting on Progress in Biomedical Optics and Imaging, 2003. 

Brown E , McKee T, Pluen A, Boucher Y, Jain RK.  Dynamic imaging of collagen in tumors in 
vivo using second harmonic generation.  Keystone Symposium on Optical Imaging: 
Applications to Biology and Medicine, 2003. 
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